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Methods of solving problems about nonstationary wing profile motion in an ideal incom- 
pressible fluid are elucidated in [i]. Results of investigating certain local singularities 
of the flow of an ideal fluid stream around a rotating plate are presented in this paper. 
The magnitude of the suction forces on the plate edges is determined. It is shown that 
under constant angular and translational velocities only these forces produce drag and lift 
of the plate. The substantial influence of the location of the point of rotation on the 
characteristics noted is clarified. 

The flow configuration is displayed in Fig. I, all the dependent and independent quant- 
ities are made dimensionless by using the semi-chord of the plate and the unperturbed stream 
velocity. The x, y coordinate system is coupled to the plate rotating at an angular veloci- 
ty ~ relative to the point x = x0, y = 0. 

The velocity potential %0 of the irrotational flow has the form cp ~-q01 q-~. Here 

~, = e(--(I/4)e-2~ sin 2~ + xoe-% sin ~) 

is the potential of the irrotational flow caused by plate rotation in a fluid at rest and 
the orthogonal elliptic coordinates 6, D are related to the Cartesian by the relationships 
x = cosh ~ cos Q, y = sinh ~ sin Q, 0 < ~ <_ m, --~ <_ n < n. The potential ~2 is the real part 
of the complex potential. 

w ~ ( z )  - =  - - z  cos a - -  / ] / ' ? " -  i s in  ~z (z ---- x -4- ig) 

of the irrotational flow around the plate at the angle of attack ~. 

In conformity with %01 the tangential velocity component u I on the plate is calculated 
for rotational motion by means of the formula 

2 x  2 - -  2 x x  o - -  t 
U 1 ( X )  = "4- (I) ,, 

H e r e  a n d  h e n c e f o r t h ,  t h e  u p p e r  a n d  l o w e r  s i g n s  c o r r e s p o n d  t o  t h e  s i d e s  o f  t h e  p l a t e  y = +0 
and y = -0. It is seen that the longitudinal velocity at the sharp edges becomes infinite. 
However, if the rotation occurs with respect to the quarter-chord point x 0 = -0.5, then it 
equals zero independently of the quantity m at the trailing edge x = -I. 

Taking account of cp~ the tangential velocity on the rotating plate is given for a free 
stream flowing around it by the expression 

r (2x 2 - -  2 z X o  - -  t )  - -  2z sin r 
u ( z )  = - -  c o s  cz -4 -  

N a t u r a l l y ,  t h e  C h a p l y g i n - Z h u k o v s k i i  c o n d i t i o n  o n  t h e  s h a r p  e d g e s  i s  n o t  s a t i s f i e d  f o r  u ( x )  
in the general case while the normal velocity component is everywhere finite and determined 
by the nonpenetration condition. 

Let us calculate the suction forces acting on the sharp edges. It follows from the 
Cauchy-Lagrange integral that not only the unboundedness of the magnitude of the velocity 
but also the possible unboundedness of the component 8~p /~t, which is quite substantial 
in nonstationary flows, can be the case of the infinitely large negative pressures. Taking 
account of 8x/St = y~, Be/St = ~, %y/~t = (x 0 - x)m, we obtain that for y = 0 and ~0 = const 

a c p , / a t  = --r - -  xo) ~-, a ~ / o t  = r s in  r + ] / t  - -  x 2) cos =.  
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Fig. i 

It is seen that these derivatives are finite at the plate edges x = • consequently, as 
in the stationary case the suction force is determined completely by the behavior of the 
velocity as x § • 

It is known that if the velocity distribution has the form V = A/~ in the neighbor- 
hood of a sharp edge (~ is the distance from the edge), then the suction force F T = ~pA 2 
(p is the fluid density). We find the coefficient A from the expression presented above 
for u(x) when x § • We have for the coefficient cT of a suction force equal to the ratio 
between F T and the velocity head of the unperturbed stream and the plate chord 

c ~ ( •  = ( ~ / 2 ) [ ~ ( 1 / 2  ~ x o) ~ sin ~]~. 

Strictly speaking, these formulas are valid for a constant angular velocity of the plate 
since the contribution of the flow nonstationarity to the magnitude of the pressure is 
obtained only for this case. 

Let us note two circumstances resulting from these formulas: i) the position of the 
point of rotation x 0 exerts considerable influence on the quantity cT; and 2) the achieve- 
ment of the identical angle of attack a in its growth and decrease regimes yields substanti- 
ally different values of the suction force on the sharp edge. The aerodynamic lift and 
drag coefficients are calculated in terms of the apparent masses, respectively, for con- 
stant values of the incoming stream velocity and the angular velocity: 

cy = - - n ~ ( ~ x  o 4- sin a)  s ina ,  c x = ~ ( ~ x  o 9C sin a)  cos a .  

It is easy to establish their connection with the quantities c T. The coefficient of 
the total suction force acting on the plate is Ac T = cT(1) - cT(-I) = ~(mx 0 + sin~). If 
we project Ac T onto the X, Y axes then we obtain expressions that agree exactly with expres- 
sions for the coefficients cx, cy. This means that in the case under consideration the 
aerodynamic action on the plate is determined completely by just the suction forces. 

In conclusion, let us note that a shift in the point of plate rotation along the normal 
to it is not reflected in any way in theresults obtained. 
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